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The sudden approximation for transition probabilities is derived
using an evolution operator formalism. The assumptions required are
explicitly stated and their vaiidity and applicability are discussed
in relation to energy transzfer during collisions between molecules and
atoms. It is shown that sufficient conditions ensuring the validity
of the sudden approximation are (1) that a classical description be
adequate to describe the relative motion of the molecules or atoms, and
(2) that the energy levels of the states mainly involved in the process
be such that the product of their energy difference and the collision

time be small compared to 1‘ .

Cixxitiyr4—

* This work was supported in part by National Aeronautics and
Space Administration, Grant NsG-275-62 (Wisconsin) and by the
Advanced Research Project Agency (Brown).

* Present Address: Thornton Research Centre, P, O. Box No. 1
Chester, England.



2.
I. INTRODUCTION

Several papers have recently been publishedl-h, in which
use is made of the sudden approximation to calculate transition
probabilities for energy exchange in ine?astic collisions
bedween atoms or molecules. Since the method seems to promise
advantages in computational ease and may therefore gain in
popularity it seems worthwhile to appraise its applicability to
molecular problems in contrast to the nuclear problems for
which it was originally developed5. In this article the
assumptions ﬁnderiying the sudden approximation are explicitly
stated, and their validity is assessed in relation to non-
reactive atomic and molecular collisions. A subsequent paper

will contain an extension to reactive scattering.

In order to establish the notation, an expression is

- derived, using the evolutlion operator formalism, for the

transition probability for a system {composed of two composite

particles) initially in state 1 going to a final state f.

“The evolution operator6 U(t,t') connects = ' the state vector

W(t) describing the system at time t with that at

time t* by the relation

W = U)W () (1)



Combining this with the Schrbdinger equation

ik 431(&) = HW()" (2)

-~

yields

Lk o\U(E,(:”) = HU(L‘ t) (3)
P 1o g |
U(‘:}E,):»'ﬁ ‘ (3a)

If H depends explicitly on time then Eqg. (3) has the solution

t b |
U(E,y)=1+§ H@YU (T F)at= Pexp L'?\ gva} (1)
. ' ¢

t

7

in which P is the Dyson time ordering operator'. If H 1s hot

explicitly time-dependent then P reduces to unlty and

U(t,t')}: exp [(e-)H/ik ] . (5)




- For convenience some properties of U(t,t') which are used
thnoughout the paper are set down here; they can easily be

derived6.
UCEE)Y U )= U(tE) . (6)

If H is Hermitian

U Uled) = Ve ) Uy =1 @

U*(e,t:’) =U(¥t). | (8)

We shall have occasion to define evolution operators
corresponding ﬁoﬂdifferent Hamiltonians. For each pailr (‘ji)'4£)
’ équations analogous to Egs. (1)-(8) are valid. Those
Hamiltonians which are explicitly time dependent are denoted
by greek subscripis.

At a time to, long before the collisioh, the system is
suppcsed to be ;;Lan eigenstate Ii;to:> of some
: Hamiltonian }40'.' The probaﬁility that at abtime_gl, long

after the collision, the system will be in some other

eigenstate I P) (:|> of Ha is



Y N L '. +
W=l flww>| =|<t Flue, BILE>] . 1o
We ':‘Lntroduce t.he Qvo ution Lper rator U U: Eo) corresponding
to.; Ho and define the phaqe of. the vectors 'VL,E> such
‘that
"’H E,> = |n> ., (10)

The functions \V\> are time-independent eigenfunctions

. of H'o s Loerefore

(H,-E))In>=0 . )

Equation (9) then becomes

b Y
L>|{: (12)

x 4 | "
\('F‘L(kbkc)i: \<F‘ Uo (t‘)ta U(EU E")i‘ - ¥y
The séoond equallty defines \jx , the evolution operator

in the interdction representation, to which corresponds the

Hamiltonian H&, s

. | (b-bYH, =L (E-t)Hg
Hg(k).—.Uj(&)t,)[H.-H,]Uo(u) e* e Ve * &,} . (13)




6.

The transition probability for ceollision is obtalned by
taking the limit of Eq. (12) as _t3|—> +0 _l:g-—a-ao .
There are 1n the general case severe restrictions on V= H-Ho
required so that these limiting processes convergeS. Apart
from such possible difficulties, the explicit time dependence
of I{(
in Eq. (12) (via Eq. (6) ) well-nigh impossible. To overcome

makes the rigorous evaluation of the matrix elements

this difficulty, one approach is to expand L&r In a

power series of V. (This yields essentilally the Born serles).
This kind of expansion does not usually converge in chemical
problems because of the strength and range of the potentials
invqlved. The other possibillty 1s to use the semiclassical
approximation. This 18 an essential prerequisite to the sudden
approximation as it is applied to molecular problems and 1is
described in detail in the next section. It is worth noting
here that in the semiclassical approximation the difficulties
assoclated with the 1limliting process mentioned earlier usually
vanlish.

IT. The Semiclassical Approximation.

Although we are here eoneerned with two body collisions,
it i1s assumed that these may involve composite particles mdde
up of ¥ elementary (structureless) particles. Equation (11)
therefore involves 3Ne3 independent space coordinates (in
the barycentric system)g. Suppose that the coordinates can

be collected into two sets a and b, such that Eq. (11) becomes
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separable. The choice of the sets a and b will depend on the
particular problem. The ccordinates in set a are eventually
treated classically throughout, and will generally include the
coordinates of relative motion of the twc bediles, but_may also
include some internai coordinates. The set b 1s treated

gquantally at all times. We write, instead of Eq. (11),

(Hw-E:\“))M)K?:O ; (142)
(H, -E® )b w> =
b " ), =0 5 (1kp)

the connection with Eq. (11) being

H0=H&+‘Hb ) 0 (153)

E. = E@.+E® E =EW, £ ) (15b)
t J J F £ 8 )

Pt
i

la,i;05> ) | =laf;bg> . (s0)
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Since Ha, and Hb ogerate on functicns of different coordinates,

they always cormube. However V= H-H

- in general
a b &
depends explicitly cn ccerdinates from beth sets a and b, so

that in general

[H,,V]#o0 , [H,,V]#0 . (16)

As will become clzar presentiv, 1t is convenient to rewrite

H =
H V@) +H, +VG, B -Vi@) = HT + H & Vs, )V, (o)

where-

\—/;\(@ =<b},mi\/(’g)é\}§blm> (17)

is the potential v averages over all coordinates b

>,

In the semiclassical apuproximaticn the potential V(& b
foe )

in the state/

—VM(Q) is replaced during a specified time interval by

another potential, v (Q,t‘) which depends explicitly

on the time and on the cccrdinates 1n set b. The time
dependence of \49 (other than a possible original explicit,
time dependence of V ) is obtainezs by replacing the coordinates

in set a by some suitably chosen [fancticn i(.t s wherever

they cccur in (an
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clagsically the evolution in time of the cocrdinates in set
4. For the moment we assume 1t to be a known function; its

- . © 3 22 . . h l (¢ o m .
evaluaticn 1s discussed in detail below. oSince o is

independent of time, we have at all times,

w
{H \V _}zo . (18)
a) B
Uy U
We introduce the svolution operators a and ﬁ
wA
corresponding to the Hamiltonians Ftland (‘4B-+V% )
L)
respectively. Obviocusly \A& operates only on functions of
a and \4§ only on those of b. It follows from the general
properties, Egs. (1)-(8), and from Eg. (18) that if (V—V)

/
is replaced by V@ in the time interval t&T £k then

U(E) = Ur(E 0 UED=UaVlED, oo

To make use of this result we rewrite Eg. (9) with the help

of Egs. (6), (14) and (i5),

. 2
lQF(al:%ﬁEo) ‘:l( , af; hb@l U(E‘)E')U(E')E’)U( l:") &o)‘aitosbj{;o)‘ . (20)

s,
Pt
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Equation {18) is ncw assumeé tc be valid in the time intervals

Eoé’c'gl-;" ("before" the co llis’on) and t’ T <L t s
("after" the coliision), i.c. V- s replaced by \/B
during these pericds. . (1 ) an now be written

IC (E“ta),

<bbgs baF’U%U’— Gk U LE EYUC e"e.,)U;(t‘;e._)\aakogwfi

(21)

To cobtain a semiclassical descriptinn of the system at

21l times, the 1imit of Eg. (21) must be taken as E -9 :
There are some subtle peints involved. The first concerns

the evaluation of the function_g(t) ‘his 1s obtained as a

solutlon to the classical equaticns of motion, with the coordinates
in set b averaged over all possible values ccnsistent with the
gquantal state | b'wt> , arprcpritate to the time period

considered. The apprcpriste Hamiltonian is therefore the
- H™ } . s
classical analog of A Thus before the collision

h
( Eo$?$k ), a(t) is given by Q.

i1s the solution tco

(E) , 8ay, which

T(a) + -\_/}(g) = E -Ej(b) = EL(“') . (22)

HereQTEZ)is the kiretic energy assocliated with the coordinates

in set a, _\-/;(Q) is the potential v(0~ b) averaged
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o - S ()
over all values of b in the state 'b)3:> whose ‘energy is Ej (Eq{14b) -
gt@:Cj», Since Eg.(22) is a first order differential equation
there will appear one constawk of integration for each
coordinate in set a. 1In the time interva.r arfter the collision,

<t gt a(F) ;aaj(@;), which 1s the solution to
a— ) — —

—

T(2) +T/;(e;>aE‘§“3=o )

J
wherein the terms are defined analogously to those in Eq. (22).
Again there appears onz constant cof integration for each
coordinate in a. 1In the 1limit gi—aff s we require that the

. Y|
coordinates in a be single-valued at thz time _\:_,= t‘:&_ s

which implies *

i a
w\\ - F

' (¢) = “O};Lj(t”) . (24)
-t

3

This condition fixes the constants of infegration in f&. (f)
in terms of é? and the constants  in éEij(k) . The
time t? 1s the time at whizsh the energy is redistributed among
the sets a and b, and at which the quantal system b jumps from
the state lb)j:> to the state ibjg:> 2. The remaining set
of constants of integration 1s determined by the initial

conditions at the time to.

The quantum mechanical analogs of _@_bl(_a and Q_.F(b)
3

must obey an equation equivalent to Eg. (24), namely
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tim UG Blarey = UT ()it (on)

k )k“

Using this equation and the definition of the phase for l b n\b:>
U
analogous tc Eq. (10), the limiting prccess E’Bt transforms

Eq. (21), for given E” into

|c(t.,&,

)

, &
t": l< b%' pr(“thto)lb]>itu (26)

Here UPY is the evcluticn operateor in the interaction

representation,

£y
(6= U LY Ut )= P & (é Hm(w:)m] en)

H’a is defined analogcusly tc ‘47 in Eq. (13),

L (-t )H ~& (-t H
H (‘c) ew Vs p(g:)e* b | (28)

where

V( &;J-(V),é) --\%(aqm) . b <t
(&,1’): (29)
V(e p)- V(e (M), tsrst,

%



Since it is in gensral impossiblie to define the time
at which the energy redistributicn takes clace, a complete
semiclassical description must include an avsraging over all

possible valuas of £ . Bguation (26 ) bacomes

L - ."ﬂ 1
\C(:)UE 3( = (l:,'%:o)g \<bglvﬁx(h)h\lb,)?ltﬂtt“ (30)

To obtain the transition prcbability, the limits are taken
as tl""’@ ) to"’ — 0 gs bafore,

—For small_-fr*actio:nail. enargy ’hd')é—,»‘AE,/E' ,E(“) E(Q /E P
the functions QLS(_(T) and "”F (e) are very similar and
consequently the value of the matrix alement of L) is
only weakly dependent cn _lzt' . {In the 1imit that AE"’O; ch"ag

ank the potenttes- \43 and hance kﬁgy bacomag independent of E‘ ).

Therefore, when AE K E it wiil generally be permissible to
omit thre 1aboricus averaging cover @f For example, 1f the
set a contains the ccordinates of relative motion of the two
bcdies, one might chcose as a representative trajectory the
cne for which the energy redistyribuficn takes place at the
distance of closest approach. An alternativs choice, equally
valid when AE""’O s, and perhaps more easilly calculated,
is to chocse the trajectory for which E”-BGO (i.e. Q_&-Lb(i’)

is u

m
[

ad gt all ,tim.es}., in order to pressrve symmetry and.

satisfy the Prineipis 4‘" GULTCrubeop L v e o TiTe




verage cf tne matrlx elements

e
M

be necessary to calculate the
"n TR S

with £ =00  ang b=2 =0 in wnich the functions a .
and £§F (t) respectively are used at 211 times. In a closely
related approximation which alsc obeys the principle of micro-
scoplec reversibility one calculates an approximate function

- - EXY cns E®D ap a1 e
using the gecmetric mean of { and f at all times.
This procedure violates the principlie of the conservation of
energy but when A,E L<L E this is nct serious. For another
discussicn of the evaluaticn of

the work of Takayanagi->.

Ct) refzrence is made too

(>

4

When the averaging over 'tu is included, the limiting
process g—?ﬁu merely extends the semiclfmsical description
to all times, and doss not imply any instantaneous interaction
or energy redistribution.- Wnen the averaging overﬁgfis not
included, then there appears & discontinuity in the slope of
the potential xé at the time t? R correspnnding to an
impulsive foree and instantznecus snergy redistribution. Even
in this case, hcwever, from the polut.of:view of the quantal
system b, the interacticn represented by the potential \45
is extended over a period cf time and cannot be considered
impulsive. There are therefore subtle differences between
these approximations and, for example,an impulse approximation16.

Fcr a discussion of the vaiidity of the semiclassiecal

approximation see refs. 10, 11, 14, and 15.
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tion

D

I1Z

3

T RN L iy g
‘ne ousden hpproxinm

The matrix elements in Eg. (26) ars no easier to calculate
than those in Eq. {12). The essential difference however is
that the potential Y; sppearing in Eq. (28) is explicitly
time dependent, whereas \/ cf Bg. 713} is, for mclecular
problems, generally not an ezpliicit function of time. Use 1s
made of this fact in what fcllows.

1"

zsnce to t is omitted. In

ot

For simplicity all refer

principle {if not in practicei) the averaging procedure over t
proceeds as 1n the semiclassgical approximation.
In order to obtain a useful expreszsion Tor the operator

)5

~4

we expand the right hand side of Eg. (27

U(tt) WP{AVM’] ‘ (

t, 2

de+ LIt EOHWV)M oo

t

- L (Y fu u [H [<t) HMLHJ - (31)

t+cther terms 1nﬁoiv1ng higher order commutators,

oo T on
We 1ntroduce the notation

£

Fmgb,k.,ka)=<bm§exp[€.& S&OV?M]‘M> (32)
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b b ®
Wl E-to)
= - =1 ¢ )
er(b,t,,k,,)—-i‘% bk | E(Hﬁt \éml be>=4 U k 1} Vﬁ&t‘) At
where i ’ (33)
u,) (E(b‘) E(b))t\" - Ef\") (3h)

V(0= bRy ®lbe>. (30)

The matrix elements of ﬁxiﬁn be written in terms of these
integrals by using Eqs. (31)-{33) (the cumbersome qualifying

parenthegés on F and G are dropred)

<halUy b > = By + SE G+ SSEG, Gy a0

+ matrix elements of the cummutator terms,

In the sudden approximation cnly the first term on the right hand

side of Eqg. (35) is retained. Eq. (35) therefore becomes

e (h#o)lm,!F(é W (36)

2&1
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From Eq. (31) it is seen that for Eg. (36) to converge in the

limits t.—%co) to - = o0 it is necessary that

IE\V%-—aoas \E‘—é<ﬂ9 . Thvis is why the sudien approximation

|\\
~—?

cannot be applied tc Eq. (12

Airactly in the usual case that

\/ is nct explicitly time dependent.

The integrals Cgkt gfven by Eg. (32) also converge
as E‘)\E\—aw when \H\/e ->0 aslbl—

The neglect of all bubt the first term in tqo ( )

\'l‘“

tantamount to the assumpticn that for all tim

{Hb,vﬁ]::o , (37)

i

and

VCRAGIELE (22)

8ince if these equations are valld all the (;ho and commutator
terms become identically zero. Eguation {37) is equivalent to
the assumption that all the eigenvalues of P{béu% degenerate

b ,
ﬁn)n- for all m,n). 7 Eg. (383) 1is generally
)

(1.e. W
satisfied in molecular problems since the potential Vé usually
involves only the position coordinates in the set b and not

the moments. Tn most cases the negliectad terms in Eqg. (35) are

: \,J,pew’s&ﬂ,« tosbesamatis evanmhena B

b gantpongsalolated: .

(e.g. when F4&>has a continucus spacbrum of eigenvalues).

12 - ‘ s
Takayanagl considered as an approximation for Ljﬁa,the
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expression

U”(l:ntﬁ z exp [El?\ (: ng(ﬁ)dt] , (39)

which 1s equivalent to neglecting &ll the commutator terms in
Eq. (30). For the rotational excitation of molecules he showed
that provided the higher order terms in the expansion of the
exponential factor in Eq. (35) are taken into account, it is a
very good approximation. Tnis incdicates that the commutator
terms were negligible in his case and we expect them to be
negligible in most caseslalthough we have been unable to show
this iﬁ’general. (see however Ref. 17 for an estimate of the
error for nuclear excitations).

-\

As can be seen from Egs. {31) en

Oy

5), the sud

()

s
\

QO
el
<

approximation is obtained from Eg. (39) by neglecting all the
terms involving (3 integrals. This prccedure will be

\ii‘ZQEFEkS \A&i l F;j‘ . To

obtain an estimate of the reliative magnitude of these terms,

valid provided

we write

. - =

-\ DN
% <k\fV wli>=t" V.. AT

—_ ~ B 3
where V&i is the mean interaction energy between the states

k. ang j during the time AT, and it is assumed that V%*i
I

is negligible at all other times ( ZXT'is therefore the effective

interaction or collisior time). Hence Eg. (33) shows that

St
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-
GM,\, w‘i}vhl AT /ot . (40)

Similarly, From Eq. {32},

. — - S N VIR
o~ ° - AT T (atd
rgi v%j AT = AT (aw)™" S \/% Vi, 4o (k)

and

\ § F%G&g,% \AT;‘ (&t\l)-i %; vékvkj (A Ehj AT/L‘h)-{—.n'\(qg

A sufficient condition that the latter quantity be negligible

compared to rFéi\ is therefore se=n to be that
AE‘_}ki NT <<+ (43)

for all the states kh which make a significant contribution to
the sum. Since, generally speaking, states which are widely
separated in energy are weakly coupled (amall. K7 , this
condition is likely toc be met whenever Zx-r is salflciently

small. If }{b has a finite spectrum then the inequallty

(43) can be written as
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ATAE <« (44)

in which AE represents an avarage of AEK\ over all

important transitions. Condition {44) wss vropcsed by

Takayanagil3. From Egs. |
that if |{ Vd,(:‘<<1§
2o B

be valid, but in that case

41} and {44) it can also be concluded

]

. th2 sudden approximation will

¢

1»

5
=
o
ry
D
R4

irst term in the expansion

of the expcnential factcr in Eg. (32} need be retained, which

is equivalent (apart from the replacement of \/ tan% ) to

the first Born approximation.

It is a characteristicof perturbation expansions that

the: unitarity of the sum of

is not maintained. ZIndeed.

methods usually diverge in
showed th&t the use cf Eqg.

and unitarity when applied

the calculated transition probabilities

r—b

or

2
-

strong coupling the perturbation

Iy

the nigher orders. Takayanagil
(39) ileads tc both convergence

to rotaticnal trangitions provided

the higher order terms in the exponential are:r kept. The

sudden approximation has the advantage over Eg. (39) that no

infinite expansion ¢f the exponential is required. Provided

that condition (43) is met

sudden approximation to be

therafcrs, one may consider the

equivalent to a special’infinite

order perturbation expansicn with the advantages of convergence

and unitarity over a wide range cof ccurling strength. For

possible correcticns to the sudden approximation see references

5, 17 ang 18.
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IV. Applicatic

Takayanagi's work on rotational excitation of a molecule (BC)
by the scattering of an atom {A) has already been referred tol,
Kramer and Bernstein2 used. the sudden approximation, Eg. (36),
toccalculate the transitiocn prcbabilities between rotational
states. We here describe in some detall the derivation of their
first equaticn, in crder to show some further properties of the
gudden approximation. The teotal Hamiltenian (with self-evident

notation) is

H: t Vl’ -‘f;. V + \/;BC(‘CA,M )’EBc) )

g, VRBC g Lo,

Kramer and Bernstein treat classically the internuclear
distance Féé)and the vecotr of relative position of A and BC,
r . These four ccordinates are therefore placed

~ A, B(C
in set a, leaving @&<= ang ¢BC for set b. To cbtain the
function a(t) the classical analog of }{ is taken,
averaging the coordinates in set b over all their possible

values. Thus

Hy = Aech“/‘wc - P (l/us Lape) )= E-E . (4

where E is the total energy of the system and Erot is the

energy associated with the angular coordinates and .
& & B
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(In fact they assumed Fgc to be a constant, and the trajectory
of A relative to BC to b2 nearliy a straight line, which 1s

equivalent to putting V;&O and in Eq. (45). Also

R_ =0
14
they used the geometric mean of the initial and final rotational
energies, as described above. 43 was shown, such approximations
while sufficient for their purpose, are not essentiallg).
Using }4 e the classicel equations of motion are solved and

. H"". .
a(t) obtained. is the guantum mechanical analog of '4c€

» 1 L i
H:'-'» '1‘_ Vf‘ “t\ VJ + VA (¢ B(.Iru) (46)

"f‘A,u ~Agc /,“ Mac 8 A

while for"4bit 1s convenient to choose the Hamiltondan operator

of a rigid rotor, whose eigenfunctions are the spherical

harmonics Y! @49) o

The potential \/ is therefers

—

V=H-H,-H =V (g, £ )=V (5, .m)en

and Vp is obtained according to the prescription, described

previously,

V "V (&(‘r) ®, 47) (g(f)) (48)
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When this expression is subsatitubed intc Eqg. {36) it will be
. ‘
seen that the last term \/ contributes only a phase factor

to the integral and can therefore be lgaored when calculating

transition probabilities. This useful result 1s quite general
for ths case of non-reactive scattaring in the sudden

© P : o SN e =
approximation. The remairing form of Eg. (42 yields

precisely their expﬂe% sion for the transicion probability,

40
9 =<8 et | Vi (O b 1) o]

)

Rapp and coworkers—, have applisd the semiclassical
approximation both tb the vibratiocnal excitation of a diatomic

molecule by coliisiocn with an ztem, and to resonant or near-

resonant exchange of vibraticnal energy between two dlatomic

molecules. They used the first significant term of the
expansion of the exponential function in Eq. (39).

L } . . .

Byron and Foley have recently used a similar formalism

to study pressure broadening cof certain atomlc spectral lines.

V Cenclusions

As a result of this derivation of the sudden approximation,

-1t is seen that the following approx in tions are essentially -

involved.

1. Some coecrdinates {(usually those of relative motion)

are treated classically, ag if under the influence of a potential

averaged over thes remaining coordinates. Rapp30 has polnted
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out that in some cases this sverage may not be a sufficiently
accurate representation of the potentisli. The semiclassical
approximation then breaks down. There are also difficulties
in the proper evaluation of the classical function a(t) arising

from the averaging over'gy

» but these become unimportant
when the fracticnal energy change is small.

2. The inequality (43) is assumed to be valid. This
will most iikely be the case when the spacing tetween the
energy levels cf the guantally treated system b is small,

and when only a few of these states are important in the

transitions. The faster the ccllision, the more likely also

will it be that AT is small and (43) valid.
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